Guide To Walter Rudin's Principles, 1.15, 1.16 (Proof Details)
Rudin Principles 1.15.a. Prove: $x \not = 0 \land xy = xz \implies y=z$ $$ \begin{array}{l c} y =y & \\ y = y \times 1 & multiplicative \ identity\\ y = y \times (x \times x^{-1}) & multiplicative \ inverse \ x \times x^{-1} = 1 \\ y = (y \times x) \times x^{-1} & associativity \\ y = (z \times x) \times x^{-1} & substitute \ given \ xy=xz \\ y = z \times (x \times x^{-1}) & associative \ given \ xy=xz \\ y = z \times 1 & multiplicative \ inverse \\ y = z & multiplicative \ identity \end{array} $$ 1.15.b. Prove: $x \not = 0 \land xy = x \implies y=1$ $$ \begin{array}{l c} y = y & \\ y = y \times 1 & multiplicative \ identity\\ y = y \times (x \times x^{-1}) & multiplicative \ inverse \ x \times x^{-1} = 1 \\ y = (y \times x) \times x^{-1} & associativity \\ y = x \times x^{-1} & substitute \ given \ xy=x \\ y = 1 & multiplicative \ inverse \end{array} $$ 1.15.c. Prove: $x \not = 0 \land xy = 1 \imp...