Guide To Walter Rudin's Principles, 1.17, 1.18 (Proof Details)
1.17: The definitions of an ordered field $F$, for $x,y,z \in F$ [i] $x+y \lt x+z$ if $y\lt z$ [ii] $xy \gt 0$ if $x\gt 0 \land y \gt 0$ Review the basic rules of working with inequalities. 1.18.a. Prove $x \gt 0 \implies -x \lt 0$ $$ \begin{array}{l c} x \gt 0 & \\ -x + x \gt -x + 0 & \\ 0 \gt -x & \end{array} $$ 1.18.b. Prove $x\gt 0 \land y \lt z \implies xy \lt xz$ $$ \begin{array}{l c} y \lt z & \\ y-y \lt z-y & \\ 0 \lt z-y & \\ 0x \lt (z-y)x & (?\times x) \ since \ x \gt 0 \\ 0 \lt zx - yx & \\ yx \lt zx -yx + yx & \\ yx \lt zx \end{array} $$ 1.18.c. Prove $x\lt 0 \land y \lt z \implies xy \gt xz$ $$ \begin{array}{l c} y \lt z & \\ y-y \lt z-y & \\ 0 \lt z-y & \\ 0x \lt -(x(z-y)) & \ since \ x \lt 0 \\ 0x \lt (-x)(z-y) & 1.16.c \\ 0 \lt (-x)z + (-x)(-y) & \\ 0 \lt -xz + (-x)(-y) & \\ 0 \lt -xz + (-(-xy)) & \\ 0 \lt -xz + xy & \\ xz \...